PAPER: CSIR-UGC-NET/JRF Dec. 2013

CHEMICAL SCIENCES BOOKLET-[C]

Part-B

- 21. L-DOPA is used for the treatment of
 - (a) Tuberculosis

(b) Parkinson's disease

(c) Diabetes

- (d) Cancer
- 22. In the IR spectrum of p-nitrophenyl acetate, the carbonyl absorption band appears at
 - (a) 1660 cm⁻¹
- (b) 1700 cm⁻¹
- (c) 1730 cm⁻¹
- (d) 1770 cm⁻¹
- 23. The major product formed in the reaction of styrene with an excess of lithium in liquid ammonia and t-butyl alcohol is:

24. The major product formed in the following reaction is

- 25. For estrone, among the statements A–C, the correct ones are
 - A. It is a steroidal hormone
 - B. It has two hydroxyl groups
 - C. It has one ketone and one hydroxyl groups
 - (a) A, B and C
- (b) A and B
- (c) A and C
- (d) B and C
- 26. An organic compound having the molecular formula C₁₀H₁₄ exhibited two singlets in the ¹H NMR spectrum, and three signals in the ¹³C NMR spectrum. The compound is

27. Amongst the following, the compound which has the lowest energy barrier for the cis-trans isomerisation is:

28. The IUPAC name of the compound given below is

- (a) (2E, 4E)-3-chlorohexa-2, 4-diene-1, 6-diol
- (b) (2Z, 4E)-3-chlorohexa-2, 4-diene-1, 6-diol
- (c) (2Z, 4Z)-4-chlorohexa-2, 4-diene-1, 6-diol
- (d) (2E, 4Z)-4-chlorohexa-2, 4-diene-1, 6-diol
- 29. The major product formed in the following reaction is

$$(a) \\ \text{MeO} \\ \text{N} \\ \text{CI} \\ \text{MeO} \\ \text{N} \\ \text{CI} \\ \text{MeO} \\ \text{N} \\ \text{OMe} \\ \text{OMe} \\ \text{OMe} \\ \text{OMe} \\ \text{MeO} \\ \text{N} \\ \text{OMe} \\ \text{OMe} \\ \text{N} \\ \text{OMe} \\ \text{OMe} \\ \text{N} \\ \text{OMe} \\ \text{OMe} \\ \text{OMe} \\ \text{N} \\ \text{OMe} \\ \text{$$

30. The constituent amino acids present in the following dipeptide, respectively, are

- (a) (R)-aspartic acid and (S)-lysine
- (b) (S)-aspartic acid and (R)-lysine
- (c) (R)-glutamic acid and (S)-arginine
- (d) (S)-glutamic and (S)-arginine
- 31. A suitable organocatalyst for enantioselective synthesis of Wieland-Miescher ketone (A) is

A (optically active)

- (a) (–)-proline
- (b) (+)-menthone
- (c) guanidine
- (d) (+)-BINOL
- 32. For acylation with acetic anhydride/triethylamine, and oxidation with chromium trioxide of the transand cis-alcohols A and B, the correct statement is

- (a) A undergoes acylation as well as oxidation faster than B
- (b) B undergoes acylation as well as oxidation faster than A
- (c) A undergoes acylation faster than B, whereas B undergoes oxidation faster than A
- (d) B undergoes acylation faster than A, whereas A undergoes oxidation faster than B.

33. The two benzylic hydrogens H_A and H_B in the compounds I and II, are

- (a) diastereotopic in I and enantiotopic in II (b) diastereotopic in II and enantiotopic in I
- (c) diastereotopic in both I and II
- (d) enantiotopic in both I and II
- 34. The following reaction proceeds through a

- (a) 1, 3-sigmatropic rearrangement
- (b) 2, 3-sigmatropic rearrangement
- (c) 3, 3-sigmatropic rearrangement
- (d) 3, 5-sigmatropic rearrangement
- 35. The number of nodes present in the highest occupied molecular orbital of 1, 3, 5-hexatriene in its ground state is
 - (a) one
- (b) two
- (c) three
- (d) four
- 36. Deuterium kinetic isotope effect for the following reaction was found to be 4.0. Based on this information, mechanism of the reaction is

- (a) E,
- (b) E₂
- (c) E_{1CB}
- (d) free radical
- 37. The major product formed in the following reaction is

- 38. The bond order of the metal-metal bond in the dimeric complex $\left[\text{Re}_2 \text{Cl}_4 \left(\text{PMe}_2 \text{Ph} \right)_4 \right]^+$ is
 - (a) 4.0
- (b) 3.5
- (c) 3.0
- (d) 2.5

- 39. The reaction of FeCl₂.6H₂O with SOCl₂ yields.
 - (a) FeCl₂(s), SO₂(g) and HCl (g)
- (b) FeCl₂(s), SO₂(g) and HCl(l)
- (c) FeCl₂(s), SO₃(s) and HCl (g)
- (d) FeCl₃(s), SO₂(g) and HCl(g)
- 40. Patients suffering from Wilson's disease have
 - (a) Low level of Cu-Zn superoxide dismutase
 - (b) High level of Cu-Zn superoxide dismutase
 - (c) Low level of copper-storage protein, ceruloplasmin
 - (d) High level of copper-storage protein, ceruloplasmin

41.	High dose of dietary supplement ZnSO ₄ for the cure of Zn deficiency (a) reduces myoglobin (b) increases iron level in blood (c) increases copper level in brain (d) reduces copper, iron and calcium levels in body				
42.	Which of the following in NOT suitable as catalyst for hydroformylation? (a) HCo(CO) ₄ (b) HCo(CO) ₃ PBu ₃ (c) HRh(CO)(PPh ₃) ₃ (d) H ₂ Rh(PPh ₃) ₂ Cl				
43.	Commonly used scintillator for measuring r (a) NaI(AI) (b) NaI(TI)		(d) CsI(AI)		
44.	A sample of aluminium ore (having no other titration of unreacted EDTA, 4 mL of 0.05 M is:	metal) is dissolved in	50 mL of 0.05 M EDTA. For the		
	(a) 27 (b) 31	(c) 35	(d) 40		
45. 46.	In a cluster, H ₃ CoRu ₃ (CO) ₁₂ , total number o (a) 57 (b) 60	(c) 63	(d) 72		
40.	Among the following, the correct acid strength (3.5 ± 1.02)		d by		
	(a) $\left[\text{Al} \left(\text{H}_2 \text{O} \right)_6 \right]^{3+} < \left[\text{Fe} \left(\text{H}_2 \text{O} \right)_6 \right]^{3+} < \left[\text{Fe} \left(\text{I}_2 \text{O} \right)_6 \right]^{3+} < \left[\text{Fe} \left($	$H_2O)_6$	1		
	(b) $\left[\text{Fe} (\text{H}_2 \text{O})_6 \right]^{3+} < \left[\text{Al} (\text{H}_2 \text{O})_6 \right]^{3+} < \left[\text{Fe} ($				
	(c) $\left[\operatorname{Fe} \left(\operatorname{H}_{2} \operatorname{O} \right)_{6} \right]^{2+} < \left[\operatorname{Fe} \left(\operatorname{H}_{2} \operatorname{O} \right)_{6} \right]^{3+} < \left[\operatorname{Al} \left(\operatorname{I} \right)_{6} \right]^{3+} < \left[\operatorname{Al} \left(\operatorname{Al} \left(\operatorname{I} \right)_{6} \right]^{3+} < \left[\operatorname{Al} \left(\operatorname{Al}$				
	(d) $\left[\text{Fe} \left(\text{H}_2 \text{O} \right)_6 \right]^{2+} < \left[\text{Al} \left(\text{H}_2 \text{O} \right)_6 \right]^{3+} < \left[\text{Fe} \left(\text{II}_4 \text{O} \right)_6 \right]^{3+} < \left[\text{II}_4 \text{O} \right]^{3+} < \left[\text{II}_4$	$\left[\mathrm{H_{2}O}\right]_{6}^{3+}$	1		
47.	Among the molten alkali metals, the example of an immiscible pair (in all proportions) is				
48.	(a) K and Na (b) K and Cs (c) Li and Cs (d) Rb and Cs Among the following, an example of a hypervalent species is				
10.	(a) $BF_3.OEt_2$ (b) SF_4	(c) [PF ₆]			
49.	An octahedral metal ion M ²⁺ has magnetic me and d-electron configuration is given by				
	(a) Co^{2+} , $t_{2g}^5 e_g^2$ (b) Cr^{2+} , $t_{2g}^4 e_g^2$	(c) Mn^{2+} , $t_{2g}^3 e_g^1$	(d) Fe^{2+} , $t_{2g}^4 e_g^2$		
50.	According to VSEPR theory, the geometry	(with lone pair) aroun	and the central iodine in I_3^+ and I_3^-		
	ions respectively are (a) tetrahedral and tetrahedal	(b) trigonal bipyrami	dal and trigonal bipyramidal		
	(c) tetrahedral and trigonal bipyramidal	(d) tetrahedral and od			
51.	Treatment of CIF ₃ with SbF ₅ leads to the for				
	(a) polymeric material(c) ionic compound	(b) covalent cluster(d) lewis acid-base ac	dduct		
52.	The reason for the chemical inertness of gaseous nitrogen at room temperature is best given b				
	(a) high bonding energy only	(b) electronic configu	ıration		
53.	(c) HOMO-LUMO gap only Two tautomeric forms of phosphorus acid as		and HOMO-LUMO gap		
	OH O OH	04 0	. Н		
	(a) POH and P	(b) POH and	P		
	, OH '', OH	· H u	L, OH		

54. The correct thermodynamics relation among the following is

$$\text{(a)} \left(\frac{\partial U}{\partial V} \right)_{\!S} = -P \qquad \text{(b)} \left(\frac{\partial H}{\partial V} \right)_{\!S} = -P \qquad \text{(c)} \left(\frac{\partial G}{\partial V} \right)_{\!S} = -P \qquad \text{(d)} \left(\frac{\partial A}{\partial V} \right)_{\!S} = -S$$

- 55. The boiling point of a solution of non-volatile solid is higher than that of the pure solvent. It always indicates that
 - (a) the enthalpy of the solution is higher than that of the pure solvent.
 - (b) the entropy of the solution is higher than that of the pure solvent.
 - (c) the Gibbs free energy of the solution is higher than that of the pure solvent.
 - (d) the internal energy of the solution is higher than that of pure solvent.
- 56. According to Arrhenius equation (K = rate constant and T = temperature)
 - (a) ln K decreases linearly with 1/T
- (b) In K decreases linearly with T
- (c) ln K increases linearly with 1/T
- (d) ln K increases linearly with T
- 57. The angle at which the first order Bragg reflection is observed from (110) plane in a simple cubic unit cell of side 3.238Å, when chromium K_{α} radiation of wavelength 2.29Å is used, is
 - (a) 30°
- (b) 45°
- $(c) 60^{\circ}$
- (d) 90°

58. The orbital with two radial and two angular nodes is

- (a) 3p
- (b) 5d
- (c) 5f
- (d) 8d
- 59. Michael Faraday observed that the colour of colloidal suspensions of gold nanoparticles changes with the size of the nanoparticles. This is because
 - (a) Gold forms complex with the solvent
 - (b) Band gap of gold changes with size of the nanoparticle.
 - (c) Gold in nanocrystalline form undergoes transmutation to other elements.
 - (d) Colloidal suspensions diffract light
- 60. The energy of 2s and 2p orbitals is the same for
 - (a) Li
- (b) Li²⁺
- (c) Be²⁺
- (d) H-
- 61. If a homonuclear diatomic molecule is oriented along the Z-axis, the molecular orbital formed by linear combination of p, orbit also of the two atoms is
 - (a) c
- (b) σ^*
- (c) π
- (d) δ
- 62. A reaction contains a mixture of N_2 , H_2 and NH_3 in equilibrium ($K_p = 3.75$ atm⁻²). If sufficient He is introduced into the reactor to double the total pressure, the value of K_p at the new equilibrium would be
 - (a) 0.94 atm^{-2}
- (b) 3.75 atm^{-2}
- (c) 7.50 atm^{-2}
- (d) 15.00 atm⁻²
- 63. The volume of a gas absorbed on a solid surface is 10.0 ml, 11.0 ml, 11.2 ml, 14.5 ml and 22.5 ml at 1.0, 2.0, 3.0, 4.0 and 5.0 atm, pressure, respectively. These data are best represented by
 - (a) Gibb's isotherm

(b) Langmuir isotherm

(c) Freundlich isotherm

- (d) BET isotherm
- 64. A compound of M and X atoms has a cubic unit cell. M atoms are at the corners and body centre position and X atoms are at face centre positions of the cube. The molecular formula of the compound is
 - (a) MX
- (b) MX,
- (c) M_3X_2
- $(d) M_2 X_3$

65.	When Frenkel defects are created in an otherwise perfect ionic crystal, the density of the ionic crystal (a) increases (b) decreases			
	(c) remains same (d) oscillates with the number of defects			
66.	•			
	(a) O_2 (b) B_2 (c) P_2 (d) N_2			
67.	In a potentiometric titration, the end point is obtained by observing			
68.	(a) change in colour (b) jump in potential (c) increase in current (d) increase in turbidity Electrolysis of an aqueous solution of 1.0 M NaOH results in			
00.	(a) Na at the cathode and O_2 at the anode.			
	(b) H_2 at the cathode and O_2^2 at the anode.			
	(c) Na and H ₂ at the cathode, and O ₂ at the anode.			
	(d) O_2 at the cathode and H_2 at the anode.			
69.	The cell voltage of Daniel cell $[Zn ZnSO_4(aq) CuSO_4(aq) Cu]$ is 1.07 V. If reduced potential			
	of Cu ²⁺ Cu is 0.34 V, the reduction potential of Zn ²⁺ Zn is			
	(a) 1.141 V (b) -1.41 V (c) 0.73 V (d) -0.73 V			
70.	In the mechanism of reaction, $H_2 + Br_2 \longrightarrow 2HBr$, the first step is			
	(a) dissociation of H ₂ into H• radicals (b) dissociation of Br ₂ into Br• radicals			
	(c) reaction of H• radical with Br ₂ (d) reaction of Br• radical with H ₂			
	Part-C			
71.	For an electronic configuration of two non-equivalent π electronics $[\pi^1, \pi^1]$, which of the			
	following terms is not possible?			
	(a) ${}^{1}\Sigma$ (b) ${}^{3}\Sigma$ (c) ${}^{3}\Delta$ (d) ${}^{3}\Phi$			
72.	Consider a two-dimensional harmonic oscillator with potential energy $V(x,y) = \frac{1}{2}k_x x^2 + \frac{1}{2}k_y y^2$			
	If $\psi_{nx}(x)$ and $\psi_{ny}(y)$ are the eigensolutions and E_{nx} and E_{ny} are the eigenvalues of harmonic os			
	cillator problem in x and y direction with potential $\frac{1}{2}k_xx^2$ and $\frac{1}{2}k_yy^2$, respectively, the wave func-			
	tion and eigenvalues of the above two-dimensional harmonic oscillator problem are			
	(a) $\Psi_{nx,ny} = \Psi_{nx}(x) + \Psi_{ny}(y)$ (b) $\Psi_{nx,ny} = \Psi_{nx}(x)\Psi_{ny}(y)$			
	$\mathbf{E}_{\mathbf{nx},\mathbf{ny}} = \mathbf{E}_{\mathbf{nx}} + \mathbf{E}_{\mathbf{ny}} \qquad \qquad \mathbf{E}_{\mathbf{nx},\mathbf{ny}} = \mathbf{E}_{\mathbf{nx}} \mathbf{E}_{\mathbf{ny}}$			
	(c) $\psi_{\text{nx,ny}} = \psi_{\text{nx}}(x)\psi_{\text{ny}}(y)$ (d) $\psi_{\text{nx,ny}} = \psi_{\text{nx}}(x) + \psi_{\text{ny}}(y)$			
	$ (c) \ \psi_{nx,ny} = \psi_{nx} (x) \psi_{ny} (y) $ $ (d) \ \psi_{nx,ny} = \psi_{nx} (x) + \psi_{ny} (y) $ $ E_{nx, ny} = E_{nx} + E_{ny} $ $ E_{nx, ny} = E_{nx} E_{ny} $			
	$\mathbf{L}_{\mathrm{nx},\mathrm{ny}} = \mathbf{L}_{\mathrm{nx}} + \mathbf{L}_{\mathrm{ny}}$ $\mathbf{L}_{\mathrm{nx},\mathrm{ny}} = \mathbf{L}_{\mathrm{nx}} \mathbf{L}_{\mathrm{ny}}$			
73.	The quantum mechanical virial theorem for a general potential $V(x,y,z)$ is given by			
	q in given o			
	$\left\langle x \frac{\partial v}{\partial x} + y \frac{\partial v}{\partial y} + z \frac{\partial v}{\partial z} \right\rangle$ where T is the kinetic energy operator and < > indicates expectation value			

 $V = \frac{1}{2}k_{x}x^{2} + \frac{1}{2}k_{y}y^{2} + \frac{1}{2}k_{z}z^{2}$

This leads to the following relation between the expectation value of kinetic energy and potential energy for a quantum mechanical harmonic oscillator problem with potential

Consider a particle in a one dimensional box of length 'a' with the following potential

(a) $\langle T \rangle = \langle V \rangle$

 $V(x) = \infty$

 $V(x) = \infty$ x > a

 $V(x) = 0 \qquad 0 \le x \le a/2$

x < 0

74.

(b) $\langle T \rangle = -\frac{1}{2} \langle V \rangle$ (c) $\langle T \rangle = \frac{1}{2} \langle V \rangle$ (d) $\langle T \rangle = -\langle V \rangle$

83. In the reaction between NO and H, the following data are obtained

Experiment I: $P_{H_2} = constant$

P _{NO} (mm of Hg)	359	300	152
$\frac{-\mathrm{dP_{NO}}}{\mathrm{dt}}$	1.50	1.03	0.25

Experiment II: $P_{NO} = constant$

P_{H_2} (mm of Hg)	289	205	147
$\frac{-dP_{H_2}}{dt}$	1.60	1.10	0.79

The orders with respect to H₂ and NO are

- (a) 1 with respect to NO and 2 with respect to H₂
- (b) 2 with respect to NO and 1 with respect to H,
- (c) 1 with respect to NO and 3 with respect to H,
- (d) 2 with respect to NO and 2 with respect to H₂
- 84. The energy for a single electron excitation in cyclopropenium cation in Hückel theory is
 - (a) B

- (c) 3B

85. The atomic masses of fluorine and hydrogen are 19.0 and 1.0 amu, respectively (1 amu = 1.67×10⁻²⁷ kg). The bond length of HF is 2.0Å. The moment of inertia of HF is

(a)
$$3.2 \times 10^{-47} \text{ kg m}^2$$
 (b) $6.4 \times 10^{-47} \text{ kg m}^2$ (c) $9.6 \times 10^{-47} \text{ kg m}^2$ (d) $4.8 \times 10^{-47} \text{ kg m}^2$

The masses recorded when a substance is weighed 4 times are 15.8, 15.4, 15.6 and 16.0 mg. The 86. variance (square of the standard deviation) is closest to

The transition that is allowed by x-polarized light in trans-butadiene is 87. (The character table for C_{2h} is given below)

(a)
$$^{1}A_{u} \rightarrow ^{1}A_{u}$$
 (b) $^{1}A_{u} \rightarrow ^{1}B_{g}$

(b)
$${}^{1}A_{u} \rightarrow {}^{1}B_{s}$$

$$(c) {}^{1}B_{u} \rightarrow {}^{1}B_{s}$$

(c)
$${}^{1}B_{u} \rightarrow {}^{1}B_{g}$$
 (d) ${}^{3}B_{g} \rightarrow {}^{1}A_{g}$

88. The heat capacity of 10 mol of an ideal gas at a certain temperature is 300 JK⁻¹ at constant pressure. The heat capacity of the same gas at the same temperature and at constant volume would be

- (a) 383 JK^{-1}
- (b) 217 JK^{-1}
- (c) 134 JK^{-1}
- (d) 466 JK^{-1}

The Maxwell's relationship derived from the equation dG = VdP - SdT is 89.

$$\text{(a)} \left(\frac{\partial V}{\partial T} \right)_{\!\!P} = \! \left(\frac{\partial S}{\partial P} \right)_{\!\!T} \quad \text{(b)} \left(\frac{\partial P}{\partial V} \right)_{\!\!T} = \! \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(c)} \left(\frac{\partial V}{\partial T} \right)_{\!\!P} = - \left(\frac{\partial S}{\partial P} \right)_{\!\!T} \quad \text{(d)} \left(\frac{\partial P}{\partial V} \right)_{\!\!T} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!T} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!T} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!T} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!T} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!T} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!T} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!T} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!T} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!T} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!T} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!T} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!T} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!T} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!T} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!T} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!T} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!P} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!P} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!P} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!P} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!P} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!P} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!P} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!P} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!P} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!P} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!P} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!P} = - \left(\frac{\partial T}{\partial S} \right)_{\!\!P} \quad \text{(d)} \quad \left(\frac{\partial P}{\partial V} \right)_{\!\!P} = -$$

90.	The chemical potential (μ_i) of the i^{th} component is defined as				
	(a) μ_i	$= \left(\frac{\partial U}{\partial n_i}\right)_{T,P}$	(b) $\mu_i = \left(\frac{\partial H}{\partial n_i}\right)_{T,P}$	(c) $\mu_i = \left(\frac{\partial A}{\partial n_i}\right)_{T,P}$	(d) $\mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{T,P}$
91.	Work	Work (w) involved in isothermal reversible expansion from V _i to V _f of n moles of an ideal gas is			
	(a) $w = -nRT ln(V_f / V_i)$		(b) $w = nRT \ln (V_f)$	(b) $w = nRT \ln(V_f / V_i)$	
	(c) w	$=$ $-$ nRT (V_f / V_f)	(v_i)	(d) $w = -nRT \log($	V_f / V_i
92. 93.	The limiting molar conductivities of NaCl, NaI and RbI are 12.7, 10.8 and 9.1 mS m² mol⁻¹, respectively. The limiting molar conductivity of RbCl would be (a) 32.6 mS m² mol⁻¹ (b) 7.2 mS m² mol⁻¹ (c) 14.4 m S m² mol⁻¹ (d) 11.0 mS m² mol⁻¹ The number of ways in which four molecules can be distributed in two different energy levels is				
(a) 6 (b) 3 (c) 16 (d) 8 94. An element exists in two crystallographic modifications with FCC and BCC structures. the densities of the FCC and BCC modifications in terms of the volumes of their unit ce V_{BCC}) is			(d) 8 C and BCC structures. The ratio of		
			(b) 2V _{BCC} : V _{FCC}	(c) V _{BCC} : 2V _{FCC}	(d) $V_{BCC}: \sqrt{2}V_{FCC}$
95.					roton in magnetic field of 12.6 T is
	close t	to $(\pi = 3.14)$			
	(a) 60		(b) 110 MHz	(c) 540 MHz	(d) 780 MHz
96.	absorb is	per at 2.2 mm s	⁻¹ for resonance. The	shift in the frequency be	10 ¹⁸ Hz) had to be moved towards etween the source and the absorber
	(a) 15.	.0 MHz	(b) 20.0 MHz	(c) 25.5 MHz	(d) 30.0 MHz
97.	Amon	g the following Complex	s, the correct combin	ation of complex and it	es color is
	(a)	$\left[\operatorname{Co}(\operatorname{CN})_{4}\right]^{2}$	Red	,	
	(b)	$\left[\mathrm{CoCl_4}\right]^{2-}$	Orange		
	(c)	[Co(NCS) ₄]			
	(d)	$\left[\text{CoF}_{4}\right]^{2-}$	Yellow		
98.	In a specific reaction, hexachlorocyclotriphosphazene, N ₃ P ₃ Cl ₆ was reacted with a metal fluoride to obtain mixed halo derivatives namely N ₃ P ₃ Cl ₅ F(A), N ₃ P ₃ Cl ₄ F ₂ (B), N ₃ P ₃ Cl ₃ F ₃ (C), N ₃ P ₃ Cl ₂ F ₄ (D) N ₃ P ₃ ClF ₅ (E). Compositions among these which can give isomeric products are (a) A, B and C (b) B, C and D (c) C, D and E (d) E, A and B				
99.					acidic behaviour. The correct se-
	_		-	ig the given species is r (b) $XeOF_4 > XeO_2$	-
			. 22	(d) $XeF_4 > XeF_6 > 1$	

100. Number of isomeric derivatives possible for the neutral closo-carborane, C₂B₁₀H₁₂ is (b) two (c) four For higher boranes 3c-2e 'BBB' bond may be a part of their structures. In B₅H₆, the number of such 101. electron deficient bond(s) present is/are (b) two (c) zero (d) one 102. In the atomic absorption spectroscopic estimation of Fe(III) using O₂/H, flame, the absorbance decreases with the addition of (a) CO_{2}^{2-} (b) SO_4^{2-} (c) EDTA In a polarographic estimation, the limiting currents (µA) were 0.15, 4.65, 9.15 and 27.15 when 103. concentration (mM) of Pb(II) were 0, 0.5, 1.0 and 3.0 respectively. An unknown solution of Pb(II) gives a limiting current of 13.65µA. Cocentration of Pb(II) in the unknown is (a) 1.355 mM (b) 1.408 mM (c) 1.468 mM The gases SO₂ and SO₃ were reacted separately with CIF gas under ambient conditions. The major 104. products expected from the two reactions respectively, are (a) SOF, and ClOSO,F (b) SOF, and SO, F, (d) SO₂ClF and ClOSO₂F (c) SO₂ClF and SO₂F₂ 105. The correct statement regarding terminal/bridging CO groups in solid Co₄(CO)₁₂ and Ir₄(CO)₁₂ is (a) both have equal number of bridging CO groups (b) number of bridging CO groups in Co₄(CO)₁₂ is 4 (c) the number of terminal CO groups in Co₄(CO)₁₂ is 8 (d) the number of bridging CO groups in Ir₄(CO)₁₂ is zero. On reducing Fe₃(CO)₁₂ with an excess of sodium, a carbonylate ion is formed. The iron is isoelec-106. tronic with (a) $\left[\operatorname{Mn}(\operatorname{CO})_{5}\right]^{+}$ (b) $\left[\operatorname{Ni}(\operatorname{CO})_{4}\right]$ (c) $\left[\operatorname{Mn}(\operatorname{CO})_{5}\right]^{+}$ (d) $\left[\operatorname{V}(\operatorname{CO})_{6}\right]^{-}$ 107. The correct statement for ozone is (a) It absorbs radiations in wavelength region 290-320 nm. (b) It is mostly destroyed by NO radical in atmosphere (c) It is non toxic even at 100 ppm level (d) Its concentration near poles is high due to its paramagnetic nature. Among the following clusters, 108. $A = [(H)Co_6(CO)_{15}]^-, B = [(H)_2Os_6(CO)_{18}], C = [(H)_2Os_5(CO)_{16}]$ H is encapsulated in (b) B only (a) A only (c) B and C only (d) A and B only The solid state structure of aluminum fluoride is 109. (b) FAI FAI FAI

Oxidised form of enzyme catalase (structure A); prepared by the reaction of $\lceil Fe(P) \rceil^+$ (P = porphyrin) 110. with H₂O₂, has green color because

A(substitutents on ring are removed for clarity)

- (a) Oxidation state of iron changed from Fe^{III} to Fe^{IV}.
- (b) Porphyrin ring is oxidized by one electron
- (c) $\pi \pi^*$ transition appears in the visible region
- (d) Fe^{IV} is coordinated with anionic tyrosinate ligand in axial position.
- 111. The reactive position of nicotinamide adenine dinucleotide (NAD) in biological redox reactions is
 - (a) 2-position of the pyridine ring
- (b) 6-position of the pyridine ring
- (c) 4-position of the pyridine ring
- (d) 5-position of the pyridine ring
- The electrophile Ph_3C^+ reacts with $\left[\left(\eta^5 C_5H_5\right)Fe(CO)_2(CDMe_2)\right]^+$ to give a product A. The 112. product A is formed because
 - (a) Fe is oxidised

(b) alkyl is susbtituted with Ph,C

(c) Fe-Ph bond is formed

- (d) Alkyl is converted to alkene
- Substitution of L with other ligands will be easiest for the species 113.

- 114. Among the following, the correct statement is
 - (a) CH is isolobal to Co(CO)₃
- (b) CH, is isolobal to Ni(CO),
- (c) CH is isolobal to Fe(CO)₄
- (d) CH₂ is isolobal to Mn(CO)₄
- 115. MnCr₂O₄ is likely to have a normal spinel structure because
 - (a) Mn²⁺ will have a LFSE in the octahedral site whereas the Cr³⁺ will not
 - (b) Mn is +2 oxidation state and both the Cr are in +3 oxidation state.
 - (c) Mn is +3 oxidation state and 1 Cr is in +2 and the other is in +3 state.
 - (d) Cr3+ will have a LFSE in the octahedral site whereas the Mn2+ ion will not.
- The ground state forms of Sm³⁺ and Eu³⁺ respectively, are 116.

 - (a) ${}^{7}F_{0}$ and ${}^{6}H_{5/2}$ (b) ${}^{6}H_{5/2}$ and ${}^{7}F_{0}$ (c) ${}^{2}F_{5/2}$ and ${}^{5}I_{4}$ (d) ${}^{7}F_{6}$ and ${}^{2}F_{7/2}$

The orbital interactions shown below represent 117.

- (a) CH₃-Al interactions in Al₂(CH₃)₆
- (c) CH₃-Li interaction in Li₄(CH₃)₄
- (b) B-H interactions in B₂H₆
- (d) CH₂CH₂-Mg interactions in EtMgBr.(OEt₂),

- Compounds K2Ba[Cu(NO2)6] (A) and Cs2Ba[Cu(NO2)6] (B) exhibit tetragonal elongation and 118. tetragonal compression, respectively. The unpaired electron in A and B are found respectively, in orbitals.

- (a) d_z^2 and $d_{x^2-y^2}$ (b) $d_{x^2-y^2}$ and d_z^2 (c) d_z^2 and d_z^2 (d) $d_{x^2-y^2}$ and $d_{x^2-y^2}$
- $Reaction \ of \ Ph_2PCH_2CH_2PPh_2 \ with \ [RhCl(CO)_2]_2 \ in \ a \ 2:1 \ molar \ ratio \ gives \ a \ crystalline \ solid \ A. \ The \ a \ a \ crystalline \ solid \ A.$ 119. IR spectrum of complex A shows $\nu_{CO}\,$ at 1985 cm $^{\!-1}\!.$ The $^{31}P(^1H)$ NMR spectrum of A consists of two doublets of doublets of equal intensities (103 Rh is 100% abundant and I = 1 2). The structure of complex A is

(b)
$$\begin{bmatrix} Ph_2 & CO & Ph_2 \\ P & & & Ph_2 \\ Ph_2 & & Ph_2 \end{bmatrix}$$
 Cl

$$(c) \begin{array}{c} Ph_2 & CO \\ P & CI \\ Rh & PPh_2 \end{array}$$

The most appropriate structure for the complex $\left[\text{Pt}_2 \left(\text{NH}_3 \right)_2 \left(\text{NCS} \right)_2 \left(\text{PPh}_3 \right)_2 \right]$ 120.

$$(a) \begin{array}{c} H_3N \\ Pt \\ SCN \end{array} \begin{array}{c} PPh_3 \\ PPh_3 \end{array}$$

$$\begin{array}{c|c} Ph_3P & NCS & NH_3 \\ \hline \\ (b) & Pt & SCN & Pt \\ \hline \\ & PPh_3 \end{array}$$

$$(c) \underset{Ph_3P}{ Pt} \underset{SCN}{ NCS} \underset{Ph_3}{ PPh_3}$$

$$(d) \underbrace{Ph_{3}P} \underbrace{Pt} \underbrace{NCS} \underbrace{Pt} \underbrace{NH_{3}} \underbrace{PPh_{3}}$$

121. The major product formed in the following reaction sequence is

$$\text{(b)} \overset{\mathsf{Ph}}{\longleftarrow} \overset{\mathsf{N}}{\longleftarrow} \overset{\mathsf{Ph}}{\longleftarrow} \mathsf{Ph}$$

$$(c)$$
 N
 Ph

$$(d) \bigvee_{\mathsf{Ph}}^{\mathsf{Ph}}$$

122. The major product formed in the following reaction sequence is

123. The major product formed in the following reaction sequence is

124. The most suitable reagent combination of A-C, required in the following conversions are

125. The major product B formed in the following reaction sequence, and overall yield of its formation are

(S)-glutamic acid
$$\xrightarrow{\text{Phenyl alanine}} A \xrightarrow{\text{LiAlH}_4} B$$

(a) NHPh and 48%

(b) NHPh and 70%

(c)
$$N$$
 NHPh and 48% (d) N NHPh and 70%

126. An organic compound ($C_8H_{10}O_2$), which does not change the color of ferric chloride solution, exhibited the following 1H NMR spectral data: δ 7.3 (1H, t, J = 8 Hz), 7.0 (1H, d, J = 8 Hz), 6.95(1H, s), 6.9 (1H, d, J = 8 Hz) 5.3 (1H, br, s, D_2O exchangeable), 4.6 (2H, s), 3.9 (3H, s). Structure of the compound is

- 127. Methyl 4-oxopentanoate exhibited signals at δ 208, 172, 51, 37, 32 and 27 ppm in its ¹³C NMR spectrum. The signals due to the methoxy, C1, C4 and C5 carbons are
 - (a) OMe -32; Cl-208; C4-172; C5-51
- (b) OMe-51; Cl-208; C4-172; C5-32
- (c) OMe-32; Cl-172; C4-208; C5-51
- (d) OMe-51; Cl-172, C4-208; C5-32
- 128. In the following reaction, the intermediate and the major product A are

129. The major product formed in the sulfuric acid mediated rearrangement of the sesquiterpene saritonin A is

$$(a) \bigcirc H \bigcirc H_2SO_4$$

$$(b) HO \bigcirc H \bigcirc H$$

130. In the following transformation, the reagent A and the major product B, respectively, are

131. The major product formed in the following reaction sequence is

132. The major product formed in the following reaction sequence is cis - but - 2ene - 1, $4 - diol \xrightarrow{1. CH_2I_2, Zn-Cu, CH_2Cl_2} \xrightarrow{2. PCC, CH_2Cl_2}$

133. The major product formed in the following reaction sequence is

Ph COOH
$$\frac{1. \text{ SOCl}_2}{2. \text{ NEt}_3}$$
 Ph

- 134. The peptide A on reaction with 1-fluoro-2, 4-dinitrobenzene followed by exhaustive hydrolysis gave phenylalanine, alanine, serine and N-(2, 4-dinitrophenyl) glycine. On the other hand, pepetide A after two cycles of Edman degradation gave Phe-Ser as the product. The structure of the peptide A is (a) Phe-Ser-Ala-Gly (b) Phe-Ser-Gly-Ala (c) Gly-Ala-Phe-Ser (d) Ala-Gly-Phe-Ser
- 135. The compound (B) (labeled) is precursor for biosynthesis of the natural product A. The labeled carbons in the product A are

(a) C1, C3, C5 and Me

- (b) C2, C4, C6 and Me
- (c) C2, C4, C6 and COOH
- (d) C1, C3, C5 and COOH
- 136. The major product formed in the following reaction sequence is

137. The major product formed in the following reaction sequence is

138. The major product formed in the following reaction sequence is

139. The conditions A-B, required for the following pericyclic reactions are

- (a) $A \Delta$; $B \Delta$
- (b) A hv; $B \Delta$
- (c) $A h\nu$; $B h\nu$
- (d) $A \Delta$; B hv

140. The number of π electrons participating and the pericyclic mode in the following reaction are

(a) 4 and conrotatory (b) 4 and disrotatory (c) 6 and conrotatory (d) 6 and disrotatory

141. Stereoselective reduction of the dione A with a chiral reducing agent provides the corresponding diol B in 100% diastereoselectivity and 90% ee favoring R, R configuration. The composition of the product is

142. The major product formed in the following reaction sequence is

143. The major product formed in the following reaction sequence is

144. The major product formed in the following reaction sequence is

145. The major product formed in the following photochemical reaction is

$$(a) \qquad Ph \qquad (b) \qquad Ph \qquad (c) \qquad Ph \qquad (d) \qquad Ph$$