JEE MAIN PRACTICE PAPER -1

- The orbital angular momentum of 4f electron is-(1)
 - (A) 4 ħ
- (B) $\sqrt{12}\,\hbar$

- (C) $\sqrt{6}\hbar$
- (D) $\sqrt{2} \hbar$
- (2)The speed of electron in the first orbit of hydrogen atom is 2.19 X 10⁶ m s-1. Its speed in the second orbit of the He+-
 - (A) 2.19 X 10⁶ m s⁻¹

(B) 1.10 X 10⁶ m s⁻¹

(C) 4.38 X 10⁶ m s⁻¹

- (D) 3.29 X 10⁶ m s⁻¹
- Suppose that we change U_{RMS} of gas in a closed container from $5\times10^{-}$ (3)²cm/sec to 10×10⁻² cm/sec, which one of the following might correctly explain how this change was accomplished
 - (A) By heating the gas we double the temperature
 - (B) By removing 75% of the gas at constant volume we decrease the pressure to one quarter of its original value.
 - (C) By heating the gas we quadruple the pressure
 - (D) By pumping in more gas at constant temperature we quadruple the pressure.
- The correct order of bond dissociation enthalpy in kJ mole-1 is (4)
 - (A) $F_2 < B_2 < O_2 < C_2$

(B) $B_2 < C_2 < O_2 < F_2$

(C) $F_2 < O_2 < C_2 < B_2$

- (D) $B_2 < C_2 < F_2 < O_2$
- The Vander Waal's constant for some gases are given (5)

	/ / /	0
Gas	a ($ m L^2 atmmol^{-2}$)	$b (L mol^{-1})$
NH_3	4.17	0.037
CO_2	3.59	0.043
$\mathrm{CH_4}$	2.25	0.043
Ω_{2}	1 36	0.032

The gas with highest critical temperature is

- $(A) NH_3$
- (B) CO_2

- (C) CH₄
- (D) O_2
- Which of the following molecules have same geometries
 - I FNO
- II CCO

- III FCO
- IV NCO

- (A) I and III
- (B) II, III and IV
- (C) I, II and IV (D) all
- (7)In the molecule of SO₂, sulphur is linked with oxygen. The bond between sulphur and oxygen is of-
 - (A) sp^2 p bond (B) sp^2 d bond
- (C) Bond A and B(D) sp-p bond

- (8)Which of the following molecules has the shortest nitrogen – nitrogen bond-
 - A) N_2H_4
- (B) N_2O

- $(C) N_2$
- (D) N_2O_4
- (9)In which of the case, the former has higher lattice energy than later compound-
 - (A) KI and LiI

(B) MgO and Na₂O

(C) KBr and NaBr

- (D) LiBr and LiF
- (10) $BX_{3(g)} \rightarrow BX_{2}^{+} + X^{-}, \Delta H = + E kJ mol^{-1}$

For which of the following halogen (X) the AH value will be maximum-

- (A) F
- (B) Cl

- (C) Br
- (D) I
- (11) The correct graphical representation for an ideal gas is

(at constant pressure)

- (A) I, II and III (B) I, III and IV
- (C) I and III
- (D) all
- (12) On cooling to sample of air from 25°C to 0°C reduces the rms velocity of molecules by a factor of -
 - (A) 0.96
- (B) 0.31

- (C) 0.45
- (D) 0.71
- A gaseous mixture of helium and oxygen is found to have density of (13)0.958 gm/L at 27°c and 760 torr. What is percent by mass of helium in this mixture?
 - (A) 5
- (B) 30

- (C) 10
- (D) 20
- (14) Which of the following statement(s) is not correct-
 - (A) Pressure-temperature law is known as Amonton's law.

	(B) The difference in pressure of moist gas and dry gas at particular temperature does not depend upon nature of gas.(C) If fixed mass of a gas is allowed to diffuse at same temperature but					
	different pressures, the ratio of rate of diffusion = $\sqrt{\frac{P_1}{P_2}}$					
	(D) According to kinetic theory of gases average kinetic energy of a gas at a particular temperature doesn't depend upon the nature of gas.					
(15)	hemoglobin com	f hemoglobin combines abines with 3.10 ml of 6 the molecular mass of (B) 4105	O_2 at body tempe	, ,		
(16)	(A) High temper pressure	able conditions for a re rature, low pressure ature, high pressure	al gas to liquefy- (B) High temper (D) Low temper			
(17)	in solution for c many moles mo	nixture of CO and CO ₂ omplete conversion of re of NaOH would it re one mole) is completely (B) 0.5	all the ${ m CO}_2$ into ${ m N}$ equire for convers	Na ₂ CO ₃ . How sion into Na ₂ CO ₃		
(18)		luoric acid gas occupy ala of the gas is HF, the (B) H ₃ F ₃				
(19)	Which of the following statement is incorrect about Van der Waal's equation for real gases. (A) The constant 'a' stands for attractive forces between gas molecules (B) b stand for repulsive force between molecules (C) P term in equation is the value of pressure of gas if gas behaves ideally (D) P is the pressure of real gas as predicted by Van der Waal's equation					
(20)	-	alpha particle are acceence, the ratio of de Br	_			

- (21) For the radial probability distribution curves $(4\pi r^2 R_{nl} \text{ Vs r graph})$, which of the following statements is correct for an orbital
 - (A) The number of maxima is n.
 - (B) The number of nodal points is n-l-1
 - (C) The radius for maximum charge density increases in the order 3s < 3p < 3d
 - (D) The number of angular nodes for an orbital is equal to l
- (22) The CN ⁻& N₂ are isoelectronic but in contrast to CN ⁻, N₂ is chemically inert because of
 - (A) Low bond energy

- (B) Absence of bond polarity
- (C) Unsymmetrical electron distribution(D) Presence of more number of electrons in bonding orbitals.
- (23) The melting point of AlF₃ is 104° C and that of SIF₄ is 77° C (it sublimes) because:
 - (A) There is a very large difference in the ionic character of the Al-F and Si-F bonds.
 - (B) In AlF₃, Al⁺³ interacts very strongly with the neighbouring F⁻ ions to give a three dimensional structure but in SiF₄ no interaction is possible.
 - (C) The silicon ion in the tetrahedral SiF₄ molecule is not shielded effectively from the fluoride ions whereas in AlF₃, Al⁺³ the ion is shielded on all sides.
 - (D) The attractive forces between the SiF_4 molecules are strong whereas those between the AlF_3 molecules are weak.
- (24) Give the correct order of initials T (true) or F (false) for following statements.
 - (I) If an ion has 2 electrons in K shell, 8 electrons in L shell and 6 electrons in M shell, then number of s orbital electrons present in that element is 6.
 - (II) The maximum number of electrons in nth subshell of is given by $2n^2$.
 - (III) If electron has magnetic number -1, then it cannot be present in s-orbital.
 - (IV) Only one radial node is present in 3p orbital.
 - (A) TTFF
- (B) FFTF
- (C) TFTT
- (D) FFTF
- (25) According to Bohr's atomic theory, which of the following is correct:
 - (I) Kinetic energy of electron \propto Z²/ n²

- (II) The product of velocity of electron and shell number 'n' $\propto Z^2$
- (III) Frequency of revolution of electron in an orbit Z²/ n³
- (IV) Coulombic force of attraction on the electron \propto $Z^3\,/\,n^4$
- (A) I, III, IV
- (B) I, IV

- (C) II
- (D) I
- (26) In the 15th group (nitrogen family), the H–M–H bond angle in the hydrides gradually becomes closer to 90° on going from N to Sb. This shows that gradually.
 - (A) The basic strength of the hydrides increases.
 - (B) Almost pure p-orbitals are used for M–H bonding.
 - (C) The bond energies of M–H bonds increase.
 - (D) The bond pairs of electrons become nearer to the central atom.
- (27) Amongst NO $_3^-$, AsO $_3^{3-}$, CO $_3^{2-}$,ClO $_3^-$,SO $_3^{2-}$ and BO $_3^{3-}$ the non-planar species are
 - (A) CO $_3^{2-}$, SO $_3^{2-}$, BO $_3^{3-}$

(B) AsO_3^{3-} , ClO_3^{-} , SO_3^{2-}

(C) NO $_3^-$, SO $_3^{2-}$ and BO $_3^{3-}$

(D) NO_{3}^{-} , SO_{3}^{2-} and BO_{3}^{3-}

MARK YOUR ANSWERS

	1	11	21	
	2	12	22	
	3	13	23	
	4	14	24	
	5	15	25	
	6	16	26	
	7	17	27	
4	8	18	28	
	9	19	29	
1	LO	20	30	
-				

JEE MAIN PRACTICE PAPER -1 solutions

1 B	11 C	21
2 A	12 A	22 B
3 C	13 B	23 C
4 A	14 B	24 C
5 A	15 C	25 A
6 B	16 C	26 B
7 C	17 D	27 A
8 C	18	28
9 B	19	29
10 A	20 C	30
		. 1

Answer: B 1.

Angular momentum = $\sqrt{\ell(\ell+1)}\hbar \Rightarrow \sqrt{3\times4}\hbar = 0$

Answer: A 2.

$$V_n = \frac{z}{n}$$
. $V_o \Rightarrow V_2 = \frac{2}{2}$. V_o

Answer: C 3.

$$v_{rms} = \sqrt{\frac{3RT}{M}} = 5 \times 10^{-4} \text{ m/s}$$

$$v_{rms} = 10 \text{ x } 10^{-4} \text{ m/s},$$

$$\frac{v_{rms}}{v'_{rms}} = \frac{1}{2} = \sqrt{\frac{T_1}{T_2}}$$

 $T_2 = 4T_1$ hence (A) is wrong

By removing 75% of gas at constant temperature $P_{new} = P/4$ hence (B) is wrong.

 $P_{\text{new}} = 4P$, therefore T' = 4T hence (C) is correct

For (D) if T remains same V_{rms} will also remains same.

Answer: A 4.

Bond Enthalpy in kJ mole-1

$$F_2 = 159.6 O_2 = 498.7 C_2 = 627.6 B_2 = 288.7$$

Bond order of C_2 and $O_2 = 2$

Bond order of F_2 and $B_2 = 1$, then compare their atomic size.

Answer: A; Higher the value of 'a' more easy to liquefy the gas. 5.

6. Answer: B

$$\ddot{F}-N=0$$
 (bent) $\ddot{C}=C=\ddot{O}$ (Linear) $F-C=O$ (Linear) $N-C=O$ (Linear)

- 7. answer C $S = [Ne] 3s^2, 3p^2$
- 8. Answer: C

Hint: N = N; the bond order = 3 so high bond dissociation energy.

9. Answer: B

Hint: Fajan's rule

10. Answer: A

Hint: Due to effective back bonding in the BF3 case.

11. Answer C

PV = constant (at constant temperature for fixed mass of gas) $P \propto 1/V$ graph is rectangular hyperbola.

12. Answer: A

Hint:
$$\frac{V_{\text{rms}} \text{ at } 0^{\circ} \text{c}}{V_{\text{rms}} \text{ at } 25^{\circ} \text{c}} = \sqrt{\frac{273}{298}} = 0.96$$

13. Answer: B

Hint:
$$\rho = \frac{P M_{avg}}{R T} \Rightarrow M_{avg} = 23.6$$
 Let mol% of helium is x,
 $4x + (1-x) \times 32 = 23.6$; $x = 0.3$ or 30%

14. for statement B

$$\begin{aligned} &P_{moist} = (n_{gas} + n_{H_2O}) \frac{RT}{V} \\ &P_{dry} = n_{gas} \frac{RT}{V} \\ &\Delta P = P_{moist} - P_{dry} \\ &\Delta P = n_{H_2O} \frac{RT}{V} \end{aligned}$$

It is right statement

For statement C : $\frac{r_1}{r_2} = \frac{P_1}{P_2}$

15. Answer: C

Hint: $n_{O_2} = \frac{PV}{RT}$; moles of hemoglobin = $\frac{1}{4}$ x mol of O_2

 $1 \text{ gm/M} = 3.045 \text{ x } 10^{-5} \text{ M} = 32840 \text{ gm/mol}$

Answer C 16.

High pressure and low temperature favors liquification.

17.

 $MaOH = 20/40 = \frac{1}{2} \text{ mole}$ 2 NaOH + CO₂→ Na₂CO₃ + H₂O
by the equation moles of CO₂ = x moles = $\frac{1}{2}$ x $\frac{1}{2}$ = $\frac{1}{4}$ CO = $\frac{3}{4}$ moles
Total moles of NaOH required = 2
Extra moles of NaOH = 2 - $\frac{1}{2}$ = $\frac{1}{2}$

n = 5.6/22.4 moles, If molecular weight is M 18.

$$\frac{10}{M} = \frac{5.6}{22.4} \Rightarrow M = 40$$
, Molecular formula = H_2F_2

- $\left(P + \frac{a}{V_m^2}\right)$ is ideal pressure.
- Answer: C 20.

 $\lambda = \frac{h}{\sqrt{2mE}}$ where E is the kinetic energy

 $\lambda = \frac{h}{\sqrt{2m(qV)}}$ where V is potential difference with which the particle has

$$\begin{split} \text{been accelerated.} \\ \lambda_{\alpha} = & \frac{h}{\sqrt{2m_{\alpha}(2.e)V}} \quad \lambda_{p} = & \frac{h}{\sqrt{2m_{p}\,e.V}} \ , \\ \frac{\lambda_{p}}{\lambda_{\alpha}} = & \sqrt{\frac{m_{\alpha}\times 2e}{m_{p}\times e}} = & \sqrt{\frac{4\,m_{p}\times 2}{m_{p}}} = & 2\sqrt{2} \end{split}$$

$$\frac{\lambda_p}{\lambda_\alpha} = \sqrt{\frac{m_\alpha \times 2e}{m_p \times e}} = \sqrt{\frac{4 \, m_p \times 2}{m_p}} = 2\sqrt{2}$$

21.The number of maxima is (n-l)

The number of modal points in the graph is (n-l-1) ie Radial nodes

22. Answer: B ; It is Fact

- 23. Answer: B; It is Fact
- 24. Answer C
 - (I)1s², 2s² 2p⁶, 3s² 3p⁴total s electron = 6 electrons
 - (II) The maximum number of electrons in nth shell = $2n^2$
 - (III) for s orbital azimuthal (l) and magnetic quantum number (m) is always zero.
 - (IV) 3p orbital radial node = (n-l-1)
- 25. Answer: A

 $KE = Z^2/n^2$. E_0 (where E_0 is the KE of electron in ground state.) V = Z/n . V_0 (where V_0 is velocity of electron in ground state.)

Frequency = V/2 π r = $\frac{\left(\frac{Z}{n}\right).V_0}{2\pi \times \left(\frac{n^2}{Z}\right).r_o} = \frac{Z^2}{n^3}$.Constant

$$F = \frac{KZe^2}{\left(\frac{n^2}{Z}\right)^2.r_0^2} = \frac{Z^3}{n^4}.Constant$$

- 26. Answer B, fact based explanation for bond angle variation
- 27. Answer A

Similarly for SO $_3^{2-}$ and BO $_3^{3-}$ resonance is applied.