Total Time : 120 minutes (A-1 and A-2)

A-1

ONLY ONE OUT OF FOUR OPTIONS IS CORRECT

1. Myoglobin, (Mb), an oxygen storage protein, contains 0.34% Fe by mass and in each molecule of myoglobin one ion of Fe is present. Molar mass of $\mathrm{Mb}\left(\mathrm{g} \mathrm{mol}^{-1}\right)$ is (Molar mass of $\mathrm{Fe}=5.845 \mathrm{~g}$ mol^{-1})
(A) 16407
(B) 164206
(C) 16425
(D) 164250

Ans. (C)
Sol. Molar mass of Myoglobin (Mb)
$=\frac{55.845}{0.34} \times 100=16425$
2. The following Ellingham diagram depicts the oxidation of ' C ', ' CO ' and Fe'. Which of the following is correct?

I. FeO can be reduced by C below 600 K
II. $\quad \mathrm{FeO}$ can be reduced by CO below 600 K
III. $\quad \mathrm{FeO}$ can be reduced by C above 1000 K
IV. FeO can be reduced by CO above 1000 K
(A) II and III
(B) I and IV
(C) I and III
(D) II and IV

Ans. (A)
Sol. Below 600 K , reaction-
$\mathrm{FeO}+\mathrm{CO} \longrightarrow \mathrm{Fe}+\mathrm{CO}_{2}$ is feasible
Above 1000 K , reaction-
$\mathrm{FeO}+\mathrm{C} \longrightarrow \mathrm{Fe}+\mathrm{CO}$ is feasible
3. A balance having a precision of 0.0001 g was used to measure a mass of a sample of about 15 g .

The number of significant figures to be reported in this measurement is
(A) 2
(B) 3
(C) 5
(D) 1

Ans. (C)
4. $\quad \mathrm{N}^{3-}, \mathrm{F}^{-}, \mathrm{Na}^{+}$and Mg^{2+}, have the same number of electrons. Which of them will have the smallest and the largest ionic radii respectively?
(A) Mg^{2+} and N^{3-}
(B) Mg^{2+} and Na^{+}
(C) N^{3-} and Na^{+}
(D) F^{-}and N^{3-}

Ans. (A)
Sol. For isoelectronic species, as no. of proton $\uparrow \Rightarrow$ size \downarrow
so correct order of size is $\mathrm{Mg}^{2+}<\mathrm{Na}^{+}<\mathrm{F}^{-}<\mathrm{N}^{3-}$
5. The reaction of 2,4-hexadiene with one equivalent of bromine at $0^{\circ} \mathrm{C}$ gives a mixture of two compounds ' X ' and ' Y '. If ' X ' is 4,5-dibromohex-2-ene, ' Y ' is
(A) 2,5-dibromohex-2-ene
(B) 2,5-dibromohex-3-ene
(C) 2,3-dibromohex-3-ene
(D) 3,4-dibromohex-3-ene

Ans. (B)

Sol.

(X)

Conjugated diene give two types of electrophilic addition reaction.
(A) 1,2-addition
(B) 1,4-addition
X is

So answer is 2,5-Dibromohex-3-ene
6. The major product of the following reaction is

Excess
(A)

(B)

(C)

(D)

Ans. (D)

Sol.

7. An electrochemical cell was constructed with $\mathrm{Fe}^{2+} / \mathrm{Fe}$ and $\mathrm{Cd}^{2+} / \mathrm{Cd}$ at $25^{\circ} \mathrm{C}$ with initial concentrations of $\left.{ }^{\prime} \mathrm{Fe}^{2+}\right]=0.800 \mathrm{M}$ and $\left[\mathrm{Cd}^{2+}\right]=0.250 \mathrm{M}$. The EMF of the cell when $\left[\mathrm{Cd}^{2+}\right]$ becomes 0.100 M is

Half cell	$\mathrm{E}^{\circ}(\mathrm{V})$
$\mathrm{Fe}^{2+}(\mathrm{aq}) / \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Cd}^{2+}(\mathrm{aq}) / \mathrm{Cd}(\mathrm{s})$	-0.40

(A) 0.013 V
(B) 0.011 V
(C) 0.051 V
(D) 0.022 V

Ans. (B)
Sol. Reaction
$\mathrm{Cd}^{2+}+\mathrm{Fe}(\mathrm{s}) \longrightarrow \mathrm{Fe}^{2+}+\mathrm{Cd}(\mathrm{s})$
$\mathrm{t}=0 \quad 0.25 \mathrm{M} \quad 0.8 \mathrm{M}$
$\mathrm{t}=\mathrm{t} \quad 0.25-\mathrm{x} \quad 0.8+\mathrm{x}$
$=0.1$
$\therefore \mathrm{x}=0.15$.
At this instance $\left[\mathrm{Cd}^{2+}\right]=0.1 \mathrm{M}$

$$
\left[\mathrm{Fe}^{2+}\right]=0.8+\mathrm{x}=0.95
$$

$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{0.059}{2} \log \frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Cd}^{2+}\right]}$
$\mathrm{E}_{\text {cell }}=(-0.4+0.44)-\frac{0.059}{2} \log \left(\frac{0.95}{0.1}\right)$
$=0.011 \mathrm{~V}$
8. The kinetic energy of the photoelectrons ejected by a metal surface increased from 0.6 eV to 0.9 eV when the energy of the incident photons was increased by 20%. The work function of the metal is
(A) 0.66 eV
(B) 0.72 eV
(C) 0.90 eV
(D) 0.30 eV

Ans. (C)
Sol. $\mathrm{KE}_{\text {max }}=\mathrm{E}-\mathrm{E}_{0}$
$0.6=\mathrm{E}-\mathrm{E}_{0} \quad \Rightarrow \quad \mathrm{E}=0.6+\mathrm{E}_{0}$
$0.9=1.2 \mathrm{E}-\mathrm{E}_{0} \Rightarrow \quad 1.2 \mathrm{E}=0.9+\mathrm{E}_{0}$
On dividing $\frac{1}{1.2}=\frac{0.6+\mathrm{E}_{0}}{0.9+\mathrm{E}_{0}}$
$0.9+\mathrm{E}_{0}=0.72+1.2 \mathrm{E}_{0}$
$\therefore \mathrm{E}_{0}=0.9 \mathrm{eV}$
9. The alkene ligand $\left(\pi-C_{2} R_{4}\right)$ is both a ' σ ' donoar and a ' π ' acceptor, similar to the CO ligand in metal carbonyls, and exhibits synergic bonding with metals. Correct order of $\mathrm{C}-\mathrm{C}$ bond length in $\mathrm{K}\left[\mathrm{PtCl}_{3}\left(\pi-\mathrm{C}_{2} \mathrm{R}_{4}\right)\right]$ complexes in which $\mathrm{R}=\mathrm{H}, \mathrm{F}$ or CN is
(A) $\mathrm{H}>\mathrm{F}>\mathrm{CN}$
(B) $\mathrm{H}>\mathrm{CN}>\mathrm{F}$
(C) $\mathrm{CN}>\mathrm{F}>\mathrm{H}$
(D) $\mathrm{F}>\mathrm{H}>\mathrm{CN}$

Ans. (C)
Sol. $\mathrm{K}\left[\mathrm{PtCl}_{3}\left(\pi-\mathrm{C}_{2} \mathrm{R}_{4}\right]\right.$
In $\mathrm{C}_{2} \mathrm{R}_{4}$ as electron withdrawing nature of $\mathrm{R} \uparrow \Rightarrow$ back bonding from pt to alkene \uparrow
$\Rightarrow \mathrm{C}-\mathrm{C}$ bond order \downarrow
so order of electron withdrawing nature-
$\mathrm{H}<\mathrm{F}<\mathrm{CN}$
order of $\mathrm{C}-\mathrm{C}$ bond length
$\mathrm{K}\left[\mathrm{PtCl}_{3}\left(\pi-\mathrm{C}_{2} \mathrm{R}_{4}\right)\right]<\mathrm{K}\left[\mathrm{PCCl}_{3}\left(\pi-\mathrm{C}_{2} \mathrm{~F}_{4}\right)\right]<\mathrm{K}\left[\mathrm{PtCl}_{3}\left(\pi-\mathrm{C}_{2}(\mathrm{CN})_{4}\right)\right]$
10. The correct order of CFSE among $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is
(A) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right) 6\right]^{3+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}>\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
(B) $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right) 4\right]^{2+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right) 6\right]^{2+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right) 6\right]^{3+}$
(C) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
(D) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right) 6\right]^{2+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right) 6\right]^{3+}>\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right) 4\right]^{2+}$

Ans. (A)
Sol. CFSE in $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ is zero.
so correct order of CFSE
$\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}^{3+}>\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}^{2+}>\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)\right]^{2+}$
11. When acid ' X ' is heated to $230{ }^{\circ} \mathrm{C}$, along with CO_{2} and $\mathrm{H}_{2} \mathrm{O}$, a compound ' Y ' is formed. If ' X ' is $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}(\mathrm{COOH})_{2}$, the structure of ' Y ' is
(A) $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOH}$
(B)

(C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{COOH})_{2}$
(D)

Ans. (D)

Sol.

12. Which of the following is correct about the isoelectronic species, Li^{+}and H^{-}?
I. H^{-}is larger in size than Li^{+}
II. Li^{+}is better reducing agent than H^{-}
III. It requires more energy to remove and electron from H^{-}and from Li^{+}
IV. The chemical properties of the two ions are the same
(A) I only
(B) II and III
(C) I, II and IV
(D) I and II

Ans. (A)
Sol. $\mathrm{Li}^{+}<\mathrm{H}^{-}$size.
$\mathrm{Li}^{+}<\mathrm{H}^{-}$reducing nature.
$\mathrm{Li}^{+}>\mathrm{H}^{-}$ionization enthalpy.
13. Number of products formed (ignoring stereoisomerism) in the monochlorination of ethylcyclohexane is
(A) 6
(B) 8
(C) 5
(D) 4

Ans. (A)
Sol.

14. The number of asymmetric carbon atoms in strychnine, whose structure given below is

(A) 5
(B) 4
(C) 6
(D) 7

Ans. (C)

Sol.

Number of asymmetric carbon $=6$
15. Molten NaCl is electrolysed for 35 minutes with a currect of 3.50 A at $40^{\circ} \mathrm{C}$ and 1 bar pressure. Volume of chlorine gas evolved in this electrolysis is
(A) 0.016 L
(B) 0.98 L
(C) 9.8 L
(D) 1.96 L

Ans. (B)
Sol. $2 \mathrm{NaCl} \longrightarrow 2 \mathrm{Na}^{+}+2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2}$
Mole of electron transfer $=\frac{i \times t}{F}$
$=\frac{3.5 \times 35 \times 60}{96500}=0.076$
Moles of Cl_{2} evolved $=\frac{0.076}{2}=0.038$
Volume of $\mathrm{Cl}_{2}=\frac{\mathrm{nRT}}{\mathrm{P}}=\frac{0.038 \times 0.083 \times 313}{1}$
$=0.98 \mathrm{Lt}$.
16. Which of the following pairs of compounds can be stable while retaining the identity of each compound in the pair over a period of time?
I. $\mathrm{FeCl}_{3}, \mathrm{SnCl}_{2}$
II. $\mathrm{HgCl}_{2}, \mathrm{SnCl}_{2}$
III. $\mathrm{FeCl}_{2}, \mathrm{SnCl}_{2}$
IV. $\mathrm{FeCl}_{3}, \mathrm{KI}$
(A) I only
(B) I and III
(C) III only
(D) II and IV

Ans. (C)
Sol. $\mathrm{HgCl}_{2}+\mathrm{SnCl}_{2} \longrightarrow \mathrm{SnCl}_{4}+\mathrm{Hg}$
$\mathrm{FeCl}_{3}+\mathrm{SnCl}_{2} \longrightarrow \mathrm{FeCl}_{2}+\mathrm{SnCl}_{4}$
$\mathrm{FeCl}_{3}+\mathrm{KI} \longrightarrow \mathrm{FeCl}_{2}+\mathrm{I}_{2}+\mathrm{KCl}$
17. The reaction $x X(g) \rightleftharpoons y Y(g)+z Z(g)$ was carried out at a certain temperature with an initial pressure of $X=30$ bar. Initially ' Y ' and ' Z ' were not present. If the equilibrium partial pressure of ' X ', ' Y ' and ' Z ' are 20, 5 and 10 bar respectively $x: y: z$ is
(A) $4: 1: 2$
(B) $2: 1: 2$
(C) $1: 2: 1$
(D) $1: 1: 2$

Ans. (B)
Sol.

$$
\mathrm{xX}(\mathrm{~g}) \rightleftharpoons \mathrm{yY}(\mathrm{~g})+\mathrm{zZ}(\mathrm{~g})
$$

$t=0 \quad 30$
$t=t_{\text {eq }} \quad 30-x n \quad y n \quad z n$

$$
=20 \quad=5=10
$$

$\therefore \quad \mathrm{xn}: \mathrm{yn}: \mathrm{zn}=10: 5: 10$
$x: y: x=2: 1: 2$
18. The major product ' P ' formed in the following sequence of reactions is

(i) Ethylene glycol, dry HCl
(ii) NaOBr
(iii) $\mathrm{H}_{3} \mathrm{O}^{+}$
(A)

(B)

(C)

(D)

Ans. (C)

Sol.

19. Sodium lauryl sulphate (SLS) is a surface active agent, which is adsorbed on water surface. The number of molecules of SLS that can be adsorbed on the surface of a spherical water droplet of diameter 3.5 mm is
(effective area of one molecule of SLS $=4.18 \mathrm{~nm}^{2}$)
(A) 9.20×10^{12}
(B) 9.20×10^{18}
(C) 1.15×10^{12}
(D) 3.68×10^{13}

Ans. (A)
Sol. Total surface area of water droplet
$=4 \pi \mathrm{r}^{2}$
$=4 \times \frac{22}{7} \times \frac{\left(3.5 \times 10^{+6}\right)^{2}}{4}$
$=3.85 \times 10^{13} \mathrm{~nm}^{2}$
No. of molecules adsorbed $=\frac{3.85 \times 10^{13}}{4.18}$
$=9.21 \times 10^{12}$
20. The unit of Planck's constant, ' h ', is the same as that of
(A) angular momentum
(B) energy
(C) wavelength
(D) frequency

Ans. (A)
Sol. Unit of Planck's constant ' h ' = Unit of angular momentum
$m v r=\frac{n h}{2 \pi}$
21. The set in which all the species are diamagnetic is
(A) $\mathrm{B}_{2}, \mathrm{O}_{2}, \mathrm{NO}$
(B) $\mathrm{O}_{2}, \mathrm{O}_{2}{ }^{+}, \mathrm{CO}$
(C) $\mathrm{N}_{2}, \mathrm{O}_{2}^{-}, \mathrm{CN}^{-}$
(D) $\mathrm{C}_{2}, \mathrm{O}_{2}{ }^{2-}, \mathrm{NO}^{+}$

Ans. (D)
Sol. $\quad \mathrm{B}_{2}, \mathrm{O}_{2}, \mathrm{NO}, \mathrm{O}_{2}{ }^{+}, \mathrm{O}_{2}^{-} \quad \rightarrow$ Paramagnetic
$\mathrm{O}_{2}{ }^{2-}, \mathrm{C}_{2}, \mathrm{~N}_{2}, \mathrm{NO}^{+}, \mathrm{CO} \rightarrow$ Diamagnetic
22. A solid comprises of three types of elements, ' P ', ' Q ' and ' R '. ' P ' forms an FCC lattice in which ' Q ' and ' R ' occupy all the tetrahedral voids and half the octahedral voids respectively. The molecular formula of the solid is
(A) $P_{2} Q_{2} R$
(B) $\mathrm{PQ}_{2} \mathrm{R}_{4}$
(C) $P_{4} Q_{2} R$
(D) $\mathrm{P}_{4} \mathrm{QR}$

Ans. (A)
Sol. Formula of solid
$=P_{4} Q_{8} R_{4 / 2}=P_{4} Q_{8} R_{2}=P_{2} Q_{4} R$
23. The following qualitative plots depict the first, second and third ionization energies (I.E.) of Mg, Al and K. Among the following, the correct match of I.E. and the metal is

(A) X-Al; Y-Mg ; Z-K
(B) X-Mg; Y-AI ; Z-K
(C) X-Mg; Y-K ; Z-AI
(D) X-Al; Y-K ; Z-Mg

Ans. (C)
Sol.

K	Mg	Al
$4 s^{1}$	$3 s^{2}$	$3 s^{2} 3 p^{1}$

Order $\mathrm{IE}_{1} \quad \mathrm{~K}<\mathrm{Al}<\mathrm{Mg}$
Order $\mathrm{IE}_{2} \quad \mathrm{Mg}<\mathrm{Al}<\mathrm{K}$
Order $\mathrm{IE}_{3} \quad \mathrm{Al}<\mathrm{K}<\mathrm{Mg}$
24. The structure of compound ' X ' $\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}\right)$ based on the following tests and observations is

Reagent/s	Observation
Neutral FeCl_{3}	No coloration
Lucas reagent	Turbidity
$\mathrm{NaNO}_{2} / \mathrm{HCl}$ at 273 K	Yellow oil

(A)

(B)

(C)

(D)

Ans. (D)

Sol. $\quad \mathrm{X}\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}\right)$

 (sec. Aromatic ammine)
25. The number of stereoisomers is maximum for
(A) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$
(B) $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{ClBr}\right]^{+}$
(C) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$
(D) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{ClBr}\right]^{+}$

Ans. (B)

Sol. $\quad\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+} \longrightarrow$ Total no. of stereoisomers $=2$
$\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{ClBr}\right]^{+} \longrightarrow$ Total no. of stereoisomers $=2+1=3$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+} \longrightarrow$ Total no. of stereoisomers $=2$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{ClBr}\right]^{+} \longrightarrow$ Total no. of stereoisomers $=2$
26. Reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgBr}$ with phenol gives
(A)

(B)

(C)

(D)

Ans. (A)
Sol.

27. The power and wavelength emitted by a laser pointer commonly used in Power Point presentations are 1.0 mW and 670 nm respectively. Number of photons emitted by this pointer during a presentation of 5 minutes is
(A) 1.01×10^{9}
(B) 1.01×10^{21}
(C) 1.6×10^{16}
(D) 1.01×10^{18}

Ans. (D)
Sol. Total energy emitted in $5 \mathrm{~min}=10^{-3} \times 5 \times 60 \mathrm{~J}=0.3 \mathrm{~J}$
$E=\frac{N h c}{\lambda}$
$\mathrm{N}=\xrightarrow[\text { hc }]{\mathrm{E} \times \lambda}=\frac{0.3 \times 670 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^{8}}=1.01 \times 10^{18}$
28. The work done (kJ) in the irreversible isothermal compression of 2.0 moles of an ideal gas from 1 bar to 100 bar at $25^{\circ} \mathrm{C}$ at constant external pressure of 500 bar is
(A) 2452
(B) 490
(C) 2486
(D) -490

Ans. (A)
Sol. $\quad W=-P_{\text {ext }}(\Delta V)$

$$
\begin{aligned}
& =-500\left(\frac{\mathrm{nRT}}{100}-\frac{\mathrm{nRT}}{1}\right) \\
& =-\mathrm{nRT}(5-500) \\
& =+2 \times 8.314 \times 298 \times 495 \times 10^{-3} \mathrm{~kJ}=+2452 \mathrm{~kJ}
\end{aligned}
$$

29. Atropine $\left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~N}\right)$ is a naturally occurring compound used to treat certain types of poisoning.

The degree of unsaturation in atropine is
(A) 7
(B) 6
(C) 5
(D) 4

Ans. (A)

Sol. $\quad\left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~N}\right)$
$D U=\frac{2 N+2+Z-M-X}{2}$
Where $=\mathrm{N}=$ no. of carbon
$M=n o$. of H
$Z=n o$. of N
X = no. of Halogen
Hence = DU = 7
30. $\mathrm{MnCl}_{2} .4 \mathrm{H}_{2} \mathrm{O}$ (molar mass $=198 \mathrm{~g} \mathrm{~mol}^{-1}$) when dissolved in water forms a complex of Mn^{2+}. An aqueous solution containing 0.400 g of $\mathrm{MnCl}_{2} .4 \mathrm{H}_{2} \mathrm{O}$ was passed through a column of a cation exchange resin and the acid solution coming out was neutralized with 10 mL of 0.20 MNaOH . The formula of the complex formed is
(A) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]$
(B) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$
(C) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}$
(D) $\mathrm{Na}\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right]$

Ans. (C)
Sol. $\mathrm{MCl}_{2} .4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{xH}^{+} \xrightarrow{\mathrm{NaOH}}$
moles of compound taken $=\frac{0.4}{198}$
moles of H^{+}formed $=\frac{\mathrm{x} \times 0.4}{198}$
moles of OH^{-}required $=0.2 \times 0.01=0.002$
$\therefore \frac{\mathrm{x} \times 0.4}{198}=0.002$
$\Rightarrow x \approx 1$
Compound is $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}$
31. Which of the following is NOT correct about hydrides ?
I. Saline hydrides are stoichiometric and metallic hydrides are non-stoichiometric
II. BeH_{2} is monomeric whereas MgH_{2} is polymeric
III. Hydrides of the elements of Group 13 are electron deficient and those of Group 15 are electron rich
IV. NaH reacts with water and liberates H_{2} whereas $\mathrm{B}_{2} \mathrm{H}_{6}$ does not react with water
(A) IV only
(B) I and III
(C) III only
(D) II and IV

Ans. (D)

Sol. $\quad \mathrm{BeH}_{2}$ is polymetric while MgH_{2} is monomeric
$2 \mathrm{NaH}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$
$\mathrm{B}_{2} \mathrm{H}_{6}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{B}(\mathrm{OH})_{3}+\mathrm{H}_{2}$
32. The compounds ' X ' and ' Y ' formed in the following reaction are

(A) hemiacetals with identical physical and chemical properties
(B) acetals with identical physical and chemical properties
(C) hemiacetals with different physical and chemical properties
(D) acetals with different physical and chemical properties

Ans. (C)

Sol.

x and y are hemiacetal and are diastereisomers of each other, so they will have different physical and chemical properties.
33. Aqueous solution of slaked lime, $\mathrm{Ca}(\mathrm{OH})_{2}$, is extensively used in municipal waste water treatment. Maximum pH possible in an aqueous solution of slaked lime is $\left(\mathrm{K}_{\text {sp }}\right.$ of $\left.\mathrm{Ca}(\mathrm{OH})_{2}=5.5 \times 10^{-6}\right)$
(A) 1.66
(B) 8.14
(C) 12.04
(D) 12.34

Ans. (D)
Sol.

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}
$$

S $2 S$
$\mathrm{K}_{\mathrm{sp}}=4 \mathrm{~S}^{3} ; \quad \mathrm{S}=0.011$
$\therefore\left[\mathrm{OH}^{-}\right]=2 \mathrm{~S}=0.022$
$\mathrm{P}_{\mathrm{OH}}=1.65 ;=\mathrm{P}_{\mathrm{H}}=12.34$
34. An electron present in the third exited state of a H atom returns of the first exited state and then to the ground state. If λ_{1} and λ_{2} are the wavelengths of light emitted in these two transitions respectively, $\lambda_{1}: \lambda_{2}$ is
(A) $4: 1$
(B) $5: 9$
(C) $3: 1$
(D) $2: 1$

Ans. (A)

Sol.

$\frac{1}{\lambda_{1}}=\mathrm{R}_{\mathrm{H}}\left(\frac{1}{4}-\frac{1}{16}\right) \Rightarrow \lambda_{1}=\frac{16}{3 \mathrm{R}_{\mathrm{H}}}$
$\frac{1}{\lambda_{2}}=\mathrm{R}_{\mathrm{H}}\left(\frac{1}{1}-\frac{1}{4}\right) \Rightarrow \lambda_{2}=\frac{4}{3 \mathrm{R}_{\mathrm{H}}}$
$\therefore \frac{\lambda_{1}}{\lambda_{2}}=\frac{16}{4}=\frac{4}{1}$
35. The percentage dissociation of 0.08 M aqueous acetic acid solution at $25^{\circ} \mathrm{C}$ is (K_{a} of acetic acid at $25^{\circ} \mathrm{C}=1.8 \times 10^{-5}$)
(A) 2.92
(B) 1.5
(C) 1.2
(D) 4.8

Ans. (B)
Sol. $\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{\oplus}$
C
$\mathrm{C}(1-\alpha) \quad \mathrm{C} \alpha \quad \mathrm{C} \alpha$
$\alpha=\sqrt{\frac{\mathrm{K}_{\mathrm{a}}}{\mathrm{C}}}=\sqrt{\frac{1.8 \times 10^{-5}}{0.08}}=0.015$
$\%$ dissociation $=1.5$
36. In which of the following, is a new $\mathrm{C}-\mathrm{C}$ bond formed in the product?
I. $\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\text { dil. } \mathrm{NaOH}}$
II. $\mathrm{CH}_{3} \mathrm{MgCl}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{\text { heat }}$
III. $\mathrm{CO}_{2}+\mathrm{CH}_{3} \mathrm{MgBr} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}}$
IV. $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{NaNH}_{2} \xrightarrow{\mathrm{CH}_{3} \mathrm{Br}} \rightarrow$
(A) I, III and IV
(B) II and III
(C) III only
(D) III and IV

Ans. (A)
Sol.

(II) $\mathrm{CH}_{3} \mathrm{MgBr}+\mathrm{EtOH} \xrightarrow[\text { acid, base }]{\text { heat }}\left(\mathrm{CH}_{4}+\mathrm{EtOMgBr}\right.$ (No C-C bond)
(III) $\mathrm{CO}_{2}+\mathrm{CH}_{3} \mathrm{MgBr} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{\oplus}} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}$ (C-C bond)

37. IUPAC name of the following molecule is

(A) 4-hydroxyhept-2-en-5-yne
(B) hept-2-en-5-yn-4-ol
(C) hept-5-en-2-yn-4-ol
(D) 4-hydroxyhept-5-en-2-yne

Ans. (B)
Sol.

Hept-2-en-5-yn-4-ol
38. The product/s of the following reaction is/are

(I)

(II)

(III)

(IV)
(A) I and II
(B) II
(C) III
(D) IV

Ans. (C)

Sol.

39. For which of the following processes, carried out in free space, energy will be absorbed ?

1. Separating an electron from an electron
II. Removing an electron from a neutral atom
III. Separating a proton from a proton
IV. Separating an electron from a proton
(A) I only
(B) II and IV
(C) I and III
(D) II only

Ans. (B)
40. Decay of radioisotopes follows first order kinetics, Radioisotope U^{238} undergoes decay to a stable isotope, Th^{234}. The ratio of the number of atoms of U^{238} to that of Th^{234} after three half lives is
(A) $1 / 3$
(B) $3 / 4$
(C) $1 / 4$
(D) $1 / 7$

Ans. (D)
Sol.

$$
\mathrm{U}^{238} \longrightarrow \quad \mathrm{Th}^{234}
$$

$$
\begin{array}{ll}
t=0 & N_{0} \\
t=3 t_{1 / 2} & N_{0}-\frac{7 N_{0}}{8} \quad \frac{7 N_{0}}{8} \\
& =\frac{N_{0}}{2^{3}}
\end{array}
$$

$\therefore \quad \frac{\text { No.ofU } U^{238} \text { atoms }}{\text { No.of } \mathrm{Th}^{234} \text { atoms }}=\frac{\mathrm{N}_{0} / 8}{7 \mathrm{~N}_{0} / 8}=\frac{1}{7}$
41. The anhydride of HNO_{3} is
(A) NO
(B) NO_{2}
(C) $\mathrm{N}_{2} \mathrm{O}$
(D) $\mathrm{N}_{2} \mathrm{O}_{5}$

Ans. (D)
Sol. Anhydride of HNO_{3} is $\mathrm{N}_{2} \mathrm{O}_{5}$
42. Which of the following is correct?
I. Sodium (Na) is present as metal in nature
II. $\mathrm{Na}_{2} \mathrm{O}_{2}$ is paramagnetic
III. NaO_{2} is paramagnetic
IV. Na reacts with N_{2} to form $\mathrm{Na}_{3} \mathrm{~N}$
(A) III only
(B) II and IV
(C) I, III and IV
(D) II, III and IV

Ans. (A)
Sol. $\quad \mathrm{Na}_{2} \mathrm{O}_{2}$ is diamagnetic
NaO_{2} is paramagnetic.
43. An excess of aqueous ammonia is added to three different flasks (F_{1}, F_{2}, F_{3}) containing aqueous solutions of $\mathrm{CuSO}_{4}, \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ and NiSO_{4} respectively. Which of the following is correct about this addition?
I. A precipitate will be formed in all three flasks
II. Ammonia acts as a base as well as a ligand exchange reagent in F_{1} and F_{3}
III. A soluble complex of NH_{3} and the metal ion is formed in F_{1} and F_{3}
IV. A precipitate will be formed only in F_{2}
(A) I only
(B) IV only
(C) II and IV
(D) II, III and IV

Ans. (D)
Sol. $\mathrm{CuSO}_{4}(\mathrm{aq})$

$\mathrm{NiSO}_{4} \xrightarrow{\text { excess of aq. } \mathrm{NH}_{3}} \underset{\text { deep blue solution }}{\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}}$
44. The reagent/s that can be used to separate norethindrone and novestrol from their mixture is/are

Norethindrone

Novestrol
I. HCl
II. NaOH
III. NaHCO_{3}
IV. NaNH_{2}
(A) III
(B) I and IV
(C) I, II and IV
(D) II

Ans. (D)
45. Which of the following is/are elecrophilic aromatic substitution reaction/s ?
I.

II.

III.

IV.

(A) II, III and IV
(B) II and III
(C) I, II and III
(D) II only

Ans. (B)
46. Among the halides $\mathrm{NCl}_{3}(\mathrm{I}), \mathrm{PCl}_{3}(\mathrm{II})$ and AsCl_{3} (III), more than one type of acid in aqueous solution is formed with
(A) I, II and III
(B) II only
(C) I and II
(D) II and III

Ans. (D)
Sol. $\mathrm{NCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NH}_{3}+3 \mathrm{HOCl}$
$\mathrm{PCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{3}+3 \mathrm{HCl}$
$\mathrm{AsCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{AsO}_{3}+3 \mathrm{HCl}$
47. The normal boiling point and $\Delta \mathrm{H}_{\text {vap }}$ of a liquid ' X ' are $400 \mathrm{~K}^{\text {and }} 40 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Assuming $\Delta H_{\text {vap }}$ to be constant, which of the following is correct?
I. $\Delta S_{\text {vap }}>100 \mathrm{JK} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ at $400 \mathrm{~K}^{2}$ and 0.5 atm
II. $\Delta S_{\text {yáp }}<100 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ at 400 K and 1 atm
III. $\Delta \mathrm{S}_{\text {rap }}<100 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ at 400 K and 2 atm
IV. $\Delta \mathrm{S}_{\text {vap }}=100 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ at 400 K and 1 atm
(A) II and IV
(B) II only
(C) I and III
(D) I, III and IV

Ans. (C)
Sol. At normal boiling point (Pext. $=$ atm $)$
$\Delta S_{\text {vap }}=\frac{\Delta \mathrm{H}_{\text {vap }}}{\mathrm{T}_{\mathrm{b}}{ }^{\circ}}=\frac{40000}{400}=100 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
At $P_{\text {ext }}=0.5 \mathrm{~atm} \Rightarrow \mathrm{~Tb}<400 \mathrm{~K}$
$\therefore \Delta S_{\text {vap }}>100 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
At $\mathrm{P}_{\text {ext }}=2 \mathrm{~atm} \Rightarrow \mathrm{~Tb}>400 \mathrm{~K}$
$\Delta S_{\text {vap }}<100 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
48. About the energy level diagram given below, which of the following statement/s is/are correct ?

Reaction coordinate
I. The reaction is of two steps and ' R ' is an intermediate
II. The reaction is exothermic and step-2 is rate determining
III. ' Q ' is an intermediate and ' R ' is the transition state for the reaction $M \rightarrow Q$
IV. 'P' is the transition state for the reaction $\mathrm{Q} \rightarrow \mathrm{N}$
(A) III and IV
(B) I, III and IV
(C) I, II and IV
(D) III only

Ans. (A)

49. The $\mathrm{F}-\mathrm{X}-\mathrm{F}$ bond angle is the smallest in (X is the central atom)
(A) CF_{4}
(B) NH_{3}
(C) OF_{2}
(D) $\mathrm{XeF}_{5}{ }^{-}$

Ans. (D)
Sol. CF_{4}
$\mathrm{NF}_{3} \quad \mathrm{~F}-\mathrm{X}-\mathrm{F}$ bond angle $=102^{\circ}$
$\mathrm{OF}_{2} \quad \mathrm{~F}-\mathrm{X}-\mathrm{F}$ bond angle $=103^{\circ}$
$\mathrm{XeF}_{5}^{-} \quad \mathrm{F}-\mathrm{X}-\mathrm{F}$ bond angle $=72^{\circ}$
50. The correct IUPAC name of the compound, $\left[\mathrm{Pt}(\mathrm{py})_{4}\right]\left[\mathrm{Pt}(\mathrm{Br})_{4}\right]$ is
(A) tetrapyridineplatinum(II) tetrabromidoplatinate(II)
(B) tetrabromidoplatinum(IV) tetrapyridineplatinate(II)
(C) tetrabromidoplatinate(II) tetrapyridineplatinum(II)
(D) tetrapyridineplatinum(IV) tetrabromidoplatinate(IV)

Ans. (A)
Sol. $\quad\left[\mathrm{Pt}(\mathrm{Py})_{4}\right]\left[\mathrm{PtBr}_{4}\right]$ IUPAC name is tetrapyridineplatinum(II) tetrabromidoplatinate(II)
51. All four types of carbon $\left(1^{\circ}, 2^{\circ}, 3^{\circ}\right.$ and $\left.4^{\circ}\right)$ are present in

I

II

III

IV
(A) I, II and III
(B) II, III and IV
(C) I, II and IV
(D) II and IV

Ans. (D)
52. The mass (g) of NaCl that has to the dissolved to reduce the vapour pressure of 100 g of water by 10% (Molar mass of $\mathrm{NaCl}=58.5 \mathrm{~g} \mathrm{~mol}^{-1}$) is:
(A) 36.11 g
(B) 17.54 g
(C) 81.25 g
(D) 3.61 g

Ans. (B)

Sol. Raoult's law

$P_{s}=P^{\circ} \times$ mole fraction of solvent
$90=100 \times\left(\frac{100 / 18}{\frac{100}{18}+\frac{w \times 2}{58.5}}\right)$
$0.9\left(\frac{100}{18}+\frac{w \times 2}{58.5}\right)=\frac{100}{18}$
$\Rightarrow \mathrm{w}=18.11 \mathrm{gm}$
Answer is not given in options, correct answer is (B).
53. The most acidic hydrogen in the following molecule is

(A) 1
(B) II
(C) III
(D) IV

Ans. (B)
Sol. The conjugate base of II OH is resonance stabilized.

54. Two isomeric hydrocarbons ' X ' and ' $\mathrm{Y}^{\prime}\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)$, give the same product $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)$ on catalytic hydration with dillute acid. However, they form different products but with same molecular formula $\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{Br}_{4}\right)$
when treated with excess bromine. ' X ' and ' Y ' are
(A)

(B)

\&

(C)
 \&

(D) \qquad
\&

Ans. (C)

Sol.

55. Mercury is highly hazardous and hence its concentration is expressed in the units of ppb (micrograms of Hg present in 1 L of water). Permissible level of Hg in drinking water is 0.0335 ppb . Which of the following is an alternate representation of this concentration?
(A) $3.35 \times 10^{-2} \mathrm{mg} \mathrm{dm}^{-3}$
(B) $3.35 \times 10^{-5} \mathrm{mg} \mathrm{dm}^{-3}$
(C) $3.35 \times 10^{-5} \mathrm{mg} \mathrm{m}^{-3}$
(D) $3.35 \times 10^{-4} \mathrm{~g} \mathrm{~L}^{-1}$

Ans. (B)
Sol. Concentration of $\mathrm{Hg}=0.0335 \mathrm{ppb}$ of $\mathrm{Hg}(\mu \mathrm{g} / \mathrm{L})$

$$
\begin{aligned}
& =0.0335 \times 10^{-3} \mathrm{mg} / \mathrm{tt} \\
& =3.35 \times 10^{-5} \mathrm{mg} / \mathrm{dm}^{3}
\end{aligned}
$$

56. The correct sequence of reaction which will yield 4-nitrobenzoic acid from benzene is
(A) $\mathrm{CH}_{3} \mathrm{Cl} ; \mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4} ; \mathrm{KMnO}_{4} / \mathrm{OH}^{-}$
(B) $\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4} ; \mathrm{CH}_{3} \mathrm{Cl} / \mathrm{AlCl}_{3} ; \mathrm{KMnO}_{4} / \mathrm{OH}^{-}$
(C) $\mathrm{CH}_{3} \mathrm{Cl}^{2} / \mathrm{AlCl}_{3} ; \mathrm{KMnO}_{4} / \mathrm{OH}^{-} ; \mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$
(D) $\mathrm{CH}_{3} \mathrm{Cl}^{2} / \mathrm{AlCl}_{3} ; \mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4} ; \mathrm{KMnO}_{4} / \mathrm{OH}^{-}$

Ans. (D)

Sol.

57. The volume of one drop of aqueous solution from an eyedropper is approximately 0.05 mL . One such drop of 0.2 M HCl is added to 100 mL of distilled water. The pH of the resulting solution will be
(A) 4.0
(B) 7.0
(C) 3.0
(D) 5.5

Ans. (A)
Sol. Conc. of $\mathrm{HCl}=\frac{0.2 \times 0.05}{100}=10^{-4} \mathrm{M}$
So $\quad \mathrm{pH}=4$
58. In which of the following species the octet rule is NOT obeyed?
I. $\mathrm{I}_{3}{ }^{-}$
II. $\mathrm{N}_{2} \mathrm{O}$
III. OF_{2}
IV. NO^{+}
(A) I and IV
(B) II and III
(C) I only
(D) IV only

Ans. (C)
Sol. $\quad \mathrm{I}_{3}^{-} \quad[\mathrm{I} \oplus \cdot \square \mathrm{I}-\mathrm{I}]^{-} \quad$ Octet rule not obeyed

$\mathrm{N}_{2} \mathrm{O}$	follows	octet rule
OF_{2}	follows	octet rule
NO^{+}	follows	octet rule

59. Which atom/s will have a δ^{+}charge in the following molecule ?

(A) I and III
(B) II only
(C) II and III
(D) II and IV

Ans. (D)
60. 2.0 moles of an ideal gas expands isothermally $\left(27^{\circ} \mathrm{C}\right)$ and reversibly from a pressure of 1 bar to 10 bar. The heaviest mass that can be lifted through a height of 10 m by the work of this expansion is
(A) 50.8 kg
(B) 50.8 g
(C) 117.1 kg
(D) 117.1 g

Ans. (C)

Sol. |work done $=$ change in potential energy

$$
\mathrm{nR} \operatorname{Tl} \ln \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}=\mathrm{mgh}
$$

$$
2 \times 8.314 \times 300 \times 2.303 \log \frac{10}{1}=m \times 9.81 \times 10
$$

$$
\mathrm{m}=117.1 \mathrm{~kg}
$$

A-2

In Q. Nos. 61 to 70 any number of options (A or B or C or all D) may be correct. You are to identify all of them correctly to get 6 marks. Even if one answer identified is incorrect or one correct answer is missed, you get zero marks.
61. A commercial sample of oleum $\left(\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}\right)$ labeled as ' 106.5% oleum' contains 6.5 g of water. The percentage of free SO_{3} in this oleum sample is
(A) 2.88
(B) 28.8
(C) 0.029
(D) 0.28

Ans. (B)

Sol. $106.5 \% \quad$ Oleum sample
$\therefore \%$ of free $\mathrm{SO}_{3}=\frac{40}{9} \times(106.5-100)=28.8 \%$
Note: Question is controvercial since formula of oleum is given $\left(\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}\right)$, however it is actually a mixture. Also oleum does not contains water, however in question, it is said to be present.
62. Which of the following species has one lone pair of electrons on the central atom?
(A) ClF_{3}
(B) I^{-}
(C) $\mathrm{I}_{3}{ }^{+}$
(D) SF_{4}

Ans. (D)

Sol.

63. Among the following, the complex ion/s that will have a magnetic moment of $2.82 \mathrm{~B} . \mathrm{M}$. is/are
I. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
II. $\left[\mathrm{NiCl}_{4}\right]^{2}$
III. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
IV. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(A) I and IV
(B) II only
(C) II and III
(D) II, III and IV

Ans. (C)
Sol. $\mathrm{Ni}(\mathrm{CO})_{4}$ number of unpaired electron $=0$
$\left[\mathrm{NiCl}_{4}\right]^{2-}$ number of unpaired electron $=2$
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ number of unpaired electron $=2$
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ number of unpaired electron $=0$
$\mu=\sqrt{n(n+2)} \Rightarrow 2.82=\sqrt{n(n+2)} n=$ number of unpaired electrons $=2$
64. Morphine, a pain killer is basic with molecular formula $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}$. The conjugate acid of morphine is
(A) $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}{ }^{+}$
(B) $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{3}$
(C) $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}^{-}$
(D) $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{+}$

Ans. (D)
65. A suboxide of carbon, $\mathrm{C}_{3} \mathrm{O}_{2}$, has a linear structure. Which of the following is correct about $\mathrm{C}_{3} \mathrm{O}_{2}$?
I. Oxidation state of all three C atoms is +2
II. Oxidation state of the central C atom is zero
III. The molecule contains 4σ and 4π bonds
IV. Hybridization of the central carbon atom is sp^{2}
(A) I and IV
(B) II and III
(C) II and IV
(D) III only

Ans. (B)
Sol.

Hyb. $\quad \mathrm{sp} \mathrm{sp} \mathrm{sp}$
66. Among the following, the compounds with highest and lowest boiling points respectively are

I

II

III

IV
(A) I and III
(B) II and III
(C) I and IV
(D) II and V

Sol. (B)
67. At $25^{\circ} \mathrm{C} \mathrm{Ka}_{\mathrm{a}}$ of $\mathrm{HPO}_{4}{ }^{2-}$ and $\mathrm{HSO}_{3}{ }^{-}$are 4.8×10^{-13} and 6.3×10^{-8} respectively. Which of the following is correct?
(A) $\mathrm{HPO}_{4}{ }^{2-}$ is a stronger acid than $\mathrm{HSO}_{3}{ }^{-}$and $\mathrm{PO}_{4}{ }^{3-}$ is a weaker base than $\mathrm{SO}_{3}{ }^{2-}$
(B) $\mathrm{HPO}_{4}{ }^{2-}$ is a weaker acid than $\mathrm{HSO}_{3}{ }^{-}$and $\mathrm{PO}_{4}{ }^{3-}$ is a weaker base than $\mathrm{SO}_{3}{ }^{2-}$
(C) $\mathrm{HPO}_{4}{ }^{2-}$ is a weaker acid than $\mathrm{HSO}_{3}{ }^{-}$and $\mathrm{PO}_{4}{ }^{3-}$ is a stronger base than $\mathrm{SO}_{3}{ }^{2-}$
(D) $\mathrm{HPO}_{4}{ }^{2-}$ is a stronger acid than $\mathrm{HSO}_{3}{ }^{-}$and $\mathrm{PO}_{4}{ }^{3-}$ is a stronger base than $\mathrm{SO}_{3}{ }^{2-}$

Sol. (C)
K_{a} of $\mathrm{HPO}_{4}^{2-}=4.8 \times 10^{-13}$
K_{a} of $\mathrm{HSO}_{3}^{-}=6.3 \times 10^{-8}$
$\therefore \mathrm{HSO}_{3}^{-}$is stronger acid than HPO_{4}^{2-}
\& SO_{3}^{2-} is weaker base than PO_{4}^{3-}
68. The change in internal energy $(\Delta \mathrm{U})$ for the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\ell)$ when 2.0 moles each of $\mathrm{Br}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ react is
$\left(\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g}) ; \Delta \mathrm{H}_{\text {reaction }}=-109 \mathrm{~kJ} ; \Delta \mathrm{H}_{\text {vap }}\right.$ of $\left.\mathrm{HBr}=213 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(A) -644 kJ
(B) 644 kJ
(C) -322 kJ
(D) -1070 kJ

Ans. (D)
Sol.

$\Delta \mathrm{H}_{\text {rex. }}=-109-426=-535 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{U}_{\text {rex. }}=\Delta \mathrm{H}_{\text {rex }}-\Delta \mathrm{n}_{\text {gas }} \mathrm{RT}=-535 \mathrm{~kJ} / \mathrm{mol}$
$\therefore \Delta \mathrm{U}$ for 2 moles each of $\mathrm{Br}_{2} \& \mathrm{H}_{2}=2 \times(-535)=-1070 \mathrm{~kJ}$
69. The structure that represents the major intermediate formed in bromination of toluene is
(A)

(B)

(C)

(D)

Ans. (C)
70. About sea water, which of the following statement/s is/are correct?
I. Frozen sea water melts at a lower temperature than pure ice
II. Boiling point of sea water increases as it evaporates
III. Sea water boils at a lower temperature than fresh water
IV. Density of sea water at STP is same as that of fresh water
(A) I only
(B) I and II
(C) I, II and III
(D) III only

Ans. (B)
(B)
71. Saran wrap, a polymer used in food packaging is a copolymer of 1, 1-dichloroethene and vinyl chloride. In the chain initiation step, 1, 1-dichloroethene generates a free radical which reacts with vinyl chloride. Structure of Saran wrap is
(A)

(B)

(C)

(D)

Ans. (D)
72. The alkene ' Y ' in the following reaction is

(A)

(B)

(C)

(D)

Sol. (C)

73. In solid state, PCl_{5} exists as $\left[\mathrm{PCl}_{4}\right]^{+}\left[\mathrm{PCl}_{6}\right]^{-}$. The hybridization of P atoms in this solid is/are
(A) $s p^{3} d\left(d=d_{x^{2}-y^{2}}\right)$
(B) $\mathrm{sp}^{3} \mathrm{~d}\left(\mathrm{~d}=\mathrm{d}_{\mathrm{z}^{2}}\right)$
(C) $s p^{3}$ and $s p^{3} d^{2}\left(d=d_{x^{2}-y^{2}}, d_{z^{2}}\right)$
(D) $s p^{3} d$ and $d s p^{3}\left(d=d_{z^{2}}\right)$

Ans. (C)
Sol. $\left.\underset{\text { Solid }}{\mathrm{PCl}_{5}} \Rightarrow \underset{\mathrm{sp}^{3}}{\mathrm{PCl}_{4}^{+}}\right] \underset{\mathrm{sp}^{3} \mathrm{~d}^{2}}{ } \mathrm{PCl}_{6}^{-} \mid$
74. Which of the following compounds have chiral carbon atom/s ?

I

III

IV

V
II
(A) I and II
(B) I, III, IV and V
(C) II, IV and V
(D) II, III and IV

Ans. (B)
75. The crystal defect indicated in the diagram below is

(A) Frenkel defect
(B) Schottky defect
(C) Frenkel and Schottky defects
(D) Interstitial defect

Ans. (B)
76. If the standard electrode potentials of $\mathrm{Fe}^{3+} / \mathrm{Fe}$ and $\mathrm{Fe}^{2+} / \mathrm{Fe}$ are -0.04 V and -0.44 V respectively then that of $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ is
(A) 0.76 V
(B) -0.76 V
(C) 0.40 V
(D) -0.40 V

Ans. (A)
Sol.

$\mathrm{E}^{\circ}+2(-0.44)=3(-0.04)$
$\mathrm{E}^{\circ}=-0.12+0.88=0.76 \mathrm{~V}$
77. Given below is the data for the reaction $2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

Where ' k_{f} ' and ' k_{b} ' are rate constants of the forward and reverse reactions respectively

Temperature (K)	$\mathrm{K}_{\mathrm{f}}\left(\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}\right)$	$\mathrm{K}_{\mathrm{b}}\left(\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}\right)$
1400	0.20	1.1×10^{-6}
1500	1.3	1.4×10^{-5}

The reaction is
(A) exothermic and $\mathrm{K}_{\text {eq }}$ at $1400 \mathrm{~K}=3.79 \times 10^{-6}$
(B) endothermic and $\mathrm{K}_{\text {eq }}$ at $1400 \mathrm{~K}=2.63 \times 10^{-5}$
(C) exothermic and $\mathrm{K}_{\text {eq }}$ at $1400 \mathrm{~K}=1.8 \times 10^{5}$
(D) endothermic and $\mathrm{K}_{\text {eq }}$ at $1500 \mathrm{~K}=9.28 \times 10^{-4}$

Ans. (C)
Sol. At $1400 \mathrm{~K} \quad \mathrm{~K}_{\mathrm{eq}}=\frac{\mathrm{K}_{\mathrm{f}}}{\mathrm{R}_{\mathrm{b}}}=\frac{0.2}{1.1 \times 10^{-6}}=1.8 \times 10^{5}$
At $1500 \mathrm{~K} \quad \mathrm{~K}_{\mathrm{eq}}=\frac{1.3}{1.4 \times 10^{-5}}=9.3 \times 10^{4}$
\therefore reaction is exothermic
78. The major product ' P ' formed in the following is (*denotes radioactive carbon)

(i) conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ excess
(ii) conc. HNO_{3}, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
(iii) $\mathrm{H}_{3} \mathrm{O}^{+}$, heat P
(A)

0
O^{-}
(B)

(C)

(D)

Ans. (A)

Sol.

79. A helium cylinder in which the volume of gas $=2.24 \mathrm{~L}$ at STP (1 atm, 273 K) developed a leak and when the leak was plugged the pressure in the cylinder was seen to have dropped to 550 mm of Hg . The number of moles of He gas that had escaped due to this lead is
(A) 0.028
(B) 0.072
(C) 0.972
(D) 0.099

Ans. (A)
Sol. Moles of He escaped
$=\frac{(\Delta \mathrm{P}) \times \mathrm{V}}{\mathrm{RT}}=\frac{\left(1-\frac{550}{760}\right) \times 2.24}{0.0821 \times 273}=\left(1-\frac{55}{76}\right) \frac{1}{10}=0.028$
80. Lipoic acid with the following structure is a growth factor required by many organisms. Percentages of ' S ' and ' O ' in lipoic acid respectively are (atomic masses of ' S ' and ' O ' are $32.065 \mathrm{~g} \mathrm{~mol}^{-1}$ and $15.999 \mathrm{~g} \mathrm{~mol}^{-1}$ respectively)

(A) $33.03,16.48$
(B) 31.11, 18.24
(C) $31.11,15.52$
(D) $31.42,15.68$

Ans. (C)

Sol. Molecular mass $=206.13 \mathrm{u}$

$\%$ of $S=\frac{64.13}{206.13} \times 100=31.11 \%$
$\%$ of $O \frac{31.998}{206.13} \times 100=15.22 \%$

